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Optimal Constrained Representation and
Filtering of Signals

Dimitri Kazakos
Electrical Engineering Department

University of Virginia
Charlottesville, VA 22901

Abs tract

*A random signal is observed in independent random noise. We are

addressing the problem of finding the optimum signal estimate that is

constrained to lie in a given linear subspace. The optimality is defined

in the sense of weighted mean square error. In the second step, we find

the optimum linear subspace of given dimensionality. It is shown tb be

the linear manifold spanned by the eigenvectors of the simultaneous

diagonalization of the signal and noise covariance, that correspond to the

largest eigenvalues. The result is valid for both discrete and continuous

time. For large observation time and stationary signals, it is shown

that the constrained optimal estimate is determined by the two spectral

F densities and a weighted Fourier Transform of the noise observations. The

above result applies to both discrete time and continuous time signals.

The Wiener filter emerges as a special case of the constrained

filtering estimate, when the linear subspace is enlarged to coincide with

the total measurement space.

Research supported by the Air Force Office of Scientific Research by
Crant AFOSR 82-0030.

Key Words: Signal Filtering, Data Compression, and Data Representation.
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Let Geea her o discrete time signals

Consier adeterministic signal xce - n-dimensional Euclidean
.1space. Le , VV;a< ni be a collection of orthonormal

column vectors V eRn. The minimum square error norm representation of x

in the liniar manifold of V'1 is defined as the solution (a1  a ) that
mm

minimizes l1x _- ky,2 It iswell known from linear algebra that theI best approximation ion e" is:

-Px k I(I V k V)x; P - projection operator (1)

If x is a random signal with zero mean and covariance matrix

a~ TRx = Exx , then it is easy to demonstrate that: [1]

S a(Vn) 9ElIx - iI2= - Vj Rx Vk (2)

where x is the best approximation given by equation (1), and S M(Vn) i

the minimum meat- square error achievable for representation of x, using
Kn

as basis the setV

Suppose nov that ye wish to choose Vn so as to minimize S (VOn). The

minimization is achieved if Vn' is chosen as the set of eigenvectors of R
x

[1], and the resulting minimum value of S (Vn) is 11]
'1

n
S*(V) n

1 k-m4-1

where A~ I 2. . . > X)n are the eigenvalues of Rordered in decreasing

magnitude.
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Consider now the case of estimating x, on the basis of noisy data.

The available observation is:

y - x + z, Ex - Ez - O, ExzT - 0T (4)

EXT a1, EZzT - R2 , lRil 0 o

Let x be an estimate of x. The weighted mean square error S M(Vn) is

defined as:

S,(vn) - Elli - 15 El 1 -)I 
R7 1

2

-1/2 --1/2
x 1 -R7 x -Rz x

and R1 /2 is the unique symmetric positive definite square root of Rz

which exists because IR1 0. Let y, _ R-l/2y , z]. R -1/2 z. Then,

multiplying (4) by Rz1 / 2 we achieve whitening of the noise: y1 
= Xl+zl,

T
EzlZ1  I

We consider now estimates of x1 of the form:

m T

xl ~ ckVkjkyl(6
k-i

I: From equation (5), the mean square error is found to be:

n R
S (Vn ) 1 ElIx 1 - VT + 2 [v +
m k-m+l k k k=

2 T T(7-2c k VRVk + ViRVk  (7)

where R R" R1Rz1 2

If we minimize S (Vn ) over the choice of the constants c. . .c

we find that the minimizing values are:

Ck (V R Vk)(Vj R Vk +1)1 ()

1! Iii



3

with a resulting minimum of S (Vn):

m n
S*(Vn) -)g(vk) + wk (9)

k-I k-m+l

where:

wk V R Vk, g(z) 1- (z + 1) <z (10)

Our next effort is to choose Vn so that S*(Vn) is minimized. From
m

(9), (10) we observe that (w i have to be minimized, and in such a manner

that the m smallest achievable values are assigned to the second partial

sum in equation (9), while the other n-m larger ones are assigned to the

first sum. So, we first minimize wn, then Wn 1 , . ., 1 , w 3, . , w1.

At each step of minimizing over V such that _I 2 -1, the previous

vectors V . V have been found and are fixed. Hence V hasJ+l J+'n j
, to be orthogonal to the previously found vectors (VJ+ 1 VJ+ 2  . V . .

From matrix theory [21, we observe that the above procedure for

finding the optimum set (V I produces the eigenvectors (Q of R. Let

1> 2  > >A2 be the corresponding eigenvalues. Let us denote by

S** the minimum over {Vn } value of S*(Vn). Then,

M ns** " i a +1 Al+ )-1  + A (11)
rn k-l km+l k(

*" The-corresponding optimal ck'a are:

- Ak(l + Ak)(12)

and the optimal estimate is:

1/2 /2 T 1 /2k-1 R! Qk R y (13) .
zin Ak(l + k) R k

k-i

i l ii i__'_II I__I'__ '___",



4

4 It is well known that the eigenvalues \, of R satisfy the equation

IwR - R.1 - 0, and Qk are the eigenvectora of R with respect to Rz . [1)

For the case rn-n, the optimum estimator of x is identical to the Wiener

filter, as can be easily verified. Thus, the new optimal representation

or estimation of the noisy signal x can be viewed as a constrained linear

* estimate of prespecified dimensionality.

The main computational difficulty of the representation is the

evaluation of the eigenvalues and eigenvectors ( Ak Qk; k-1, . .. , n)

of the matrix Rx with respect to the matrix Rn . There are some special

cases in which the eigenvectors and eigenvalues can be evaluated in

closed form, described next.

41
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RkBeIL1. Suppose that x is produced by uniform BaMPliag every iie * Of

a periodic process with period nh. Then RxIs a circulant: (%q -8

0R . (14

(14

i.e., each row is a cyclic permutation of the first one. Let, also z be

white noise with R - a 2 h arxR R i xR ,.02 R has real

eigenvalues 131, 14]:

Xk ~ ~ 8- ~ x -u~- k-l)n1 ] k -1, . . ., n. (5

The corresponding eigenvectors are:

Hene, t i aneas materto pick the m largest eigenvalues from .(15),

th corsodn egevecorsfro (16),adte formulate the optimum (6

estiateaccording to equation (13).

Exmil Tridiagonal correlation.

16 q 1

R v-2 R (12



The eigenvalues of (17) are [5]:

'k -
2 (l 1 

- 2qcos[kir(n + 1)1]); k a 1, . ., n (18)

The corresponding eigenvectors are [5]:

Q " {[2/(n + 1)] sin[ksw (n + 1)-l]; - 1, 2, . .. , n) (19)k

We will consider next the case of stationary observations and large n.

4 Then, the matrices Rx, Rz are Toeplitz. Let s x(X), as(X); Xe[O, 2] be the

spectral densities of the processes x, z, assumed to be strictly positive for

all Xc[0, 21!]. We also assume that the autocorrelation sequences for x, z are

square summable. Then, according to the theory developed in [4], we can

determine the asymptotic distribution of the eigenvalues of the matrix R and

the corresponding eigenvectors. The eigenvalues are for k a 1, .n....:
.1

Ak~ = x(2wkn-) az (2wkn) (20)

Q en-, xp- 2wj(k-l)(s-l)n- 1; s - 1, . ., n (21)

The matrix R has the following approximate expression for large n:

-1T

R 9 (2vkn -l) Qk Q (22)

For the optimal representation of x by an m dimensional subspace, the m

indices corresponding to the m larges eigenvalues Xk according to equation (20)

will provide the solution. The corresponding eigenvector Qk given by eq. (21)

will determine the estimate %, according to eq. (13). From equations (11),

-- (20) we can derive the resulting mean square error:

** ,n [k - ix (2wkn' )9,z(2wkn - 1 ) + l] 1 +

a k-l-x

+ I a x(2kn') it (2wkn) (3)

im i+l X



I- -
We now let m be a fixed fraction of n, m -np, 0 < p < 1. The question we

consider now is: If a fraction p of the signal coordinates are allowed, what

is the best achievable mean square error when n--? We are specifically

interested in the asymptotic per sample mean square error, defined as:

S**(p) A lim n-IS* (under the condition m -np) (24)
__ np

From (23), 24) we find:

S**(p) - (v)-j [1 - [s (s l (X) + 1]-lldX +
I x z

+ (2) S(X) (X) dx (25)

where I is a subset of the interval (0, 2w], of Lebesgue measure 2rp, and such~P

that the largest values of s x(X)s (X) are concentrated in I . In other

words, for any X1CI pI 2f p, we will have sx( 1 )s 1 (Xl) 1 sx(2)s z1 (X2).

Our conclusions are useful for suboptimal filtering and compression of

noisy data. The compression ratio when the subspace of dimensionality m - np

-1
is used, is equal to p

From the theory of asymptotic approximation of Toeplitz matrices by

circulant ones, ([3], [4]) we find that using (22), For large n, we have:

n I T n 1 T
R11 Z I s ; (272kn ) Q kOkn-) Qk k (26)
Sk=1 k 26)=l

where (Q k} are the Finite Fourier Transform vectors, defined by eq. (21).

Substituting the approximations (26), (20), (21) into (13), and using

the orthogonality of fQ after some algebra we find the following expression

for ^:

71
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' m

k-i k % Ck yk (27)

where:

ck El- [s (2wkn -)s (2wkn-l + 1-I ]  (28)
kx z

and

k y (29)

Iare the Discrete Fourier Transform (DFT) coefficients of the vector y. They

can be evaluated by Fast Fourier Transform methods.

Equation (27) provides the following conclusion. If one wishes to

represent x using m of the DFT coefficients, and a noisy version of x is

only available, the mean square optimal representation will be achieved through

(27) - (29). assuming that Sx, sz are known a-priori. The weighting coefficients

Ck essentially act as optimal filtering coefficients in the orthogonal

directions of the representation subspace. The directions are chosen so

that the signal to noise ratio s x(2nkn - ) s I (2Trkn - ) is maximal.

It should be stressed that the estimate x is given by the approximate

expression (27). The question of how well the approximate estimate performs

as compared to the exact one, is of interest but not pursued here. For the

unconstrained filtering problem, Pearl has derived interesting bounds for

the variance of the approximate filtering estimate based on the Discrete

Fourier Transform (6]. We believe that his work on asymptotic equivalence

of spectral representations (71 is applicable in deriving bounds for the mean

square error performance of the approximate constrained estimate (27).

'Lac_



II. Continuous time signals

We will consider now extension of the previous theory to continuous

time random signals observed in the presence of noise. Let

y(t) - x(t) + z(t); 0 < t < T

where x(t), z(t) are zero mean processes of finite mean square value, with

correlation functions R x(t, s), R z(t, s) correspondingly.

Instead of developing a new theory parallel to the development of Section

I, we will proceed stating the continuous time analogous results. All of the

continuous time development can be made rigorous by using Kadota's

simultaneous orthogonal expansion of two operators (8], (9].

Consider the operator:

R 6 R(t, s) = R -  R R (30)
z x Z

where R - is the inverse of the square root of R z(t, s), appropriately defined.Szz
The assumption that R is a bounded and densely defined operator has to be

made [9]. Then, R has a set of orthonormal eigenfunctions [fk(t); k 1 1, 2, ...1

and corresponding eigenvalues {X 1> X 2 1 A " , satisfying the integral equation:

f R(t, s) k(s)ds = X kk(t) (31)

0

Let

T _
zk(t) - f R (t' S)"k(s)ds (32)

0

Then [z (t)) are the eigenfunctions of Rx with respect to R with corresponding
k

eigenvalues U k}, in analogy to the time discrete case. The mean square error

of estimating x(t) using m coordinates only, will be minimized if

Y ji _____
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* the eigenfunctions corresponding to the m largest eigenvalues are used. The

eigenfunctions zk(t) satisfy the integral equation:

T T
f R (t, s)Zk(S)ds "k J R(t, S)zk(S)ds (33)
0 0

and the orthogonality condition with respect to R
z

T T

fT Zk(t)Rz(t, s)z*(s)dtds - k, m34)
,~ 00

The estimate X(t), after some manipulations, is found to have the expression:
m fk-  T T

t X k (l + X0 Rz(t, S)Zk(S)ds f zk(u)y(u)du .(35)
k=1 0 0

The resulting mean square error is:
Im

m -1S** L[1-( +i) + M +k (36)
m k=l k--m+l

With the exception of some special cases mentioned in [8], the evaluation of

eigenvalues and eigenfunctions cannot be achieved in closed form. Numerical

solutions are required, in general. Hence, equations (33)-(36) are of

theoretical interest but limited practical usefulness.

There is a special case of practical importance, in which simplifications

are possible. Suppose that x(t), z(t) are wide sense stationary processes

of finite average power, and are observed on [-T/2, T/2]. Suppose also that

the corresponding spectral densities s x(f), sz (f) are positive on [-W, W] and

zero otherwise.

For large T, Van Trees develops in [101 approximations to the eigenvalues

and eigenvectors of an integral equation of the type (33), but for the special

case R z(t, s) - 6(t - s). Straightforward extension of the approach of Van

*1 Trees yields the approximation:

4t

"' " " ! r ' ' I~ m : . . . .'"' "' ... . .. ... r '



z k(t) T exp (j 2TrkT t); It I T/2

" k zs 1x(kT- ) s1 (kT ); -WT < k < WT

for large T. Note that the approximate numbers of eigenvalues or degrees of

freedom of the signals involved are 2WT, equal to the number mandated by the

sampling theorem for bandlimited random processes.

Suppose now that a fraction p of the 2WT degrees of freedom is used. The

resulting approximation to the mean square error is:

2TWp -2 TW

k- k +k-2WTp+l k

where the ordering of eigenvalues is:

We can evaluate now the asymptotic representation error per unit time as

S* lim T -1S* (T) f s (f)s (f) + s (f)]1 df +
Ip T pX x z

+ Is (f)s -l (f)df.x z
p

where I c[-W, W] is a subset of Lebesque measure 2Wp, such that the ratio
p

s (~sz (f) imamli.e. for all f I I f 2 4Ip we have

1~1

'IIf1) ( f2 sz ( )

-~. 'ON



Conclusions

We have developed some intuitively sensible conclusions on the constrained

representation of noisy signals, when the signal and noise covariances are

known. We have shown that the eigenvalue-eigenvector expansion provides the

minimum mean square error subspace of fixed dimensionality. The use of eigenvectors

and associated subspaces has been proven useful in various signal and image

processing applications, assuming no noise ([101 - [13]). Problems in which

the developed techniques are applicable are the simultaneous compression and

filtering of noisy speech and images, and the processing of sensor array data.

(see, for example, [14]).

4
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